Interior permanent magnet synchronous machines (IPMSMs) driven with a square-wave control (i.e., six-step, block, or 120∘ control), known commonly as brushless direct current (BLDC) drives, are used widely due to their high power density and control simplicity. The advance firing (AF) angle is employed to achieve improved operation characteristics of the drive. The AF angle is, in general, applied to compensate for the commutation effects. In the case of an IPMSM, the AF angle can also be adjusted to exploit reluctance torque. In this paper, a detailed study was performed to understand its effect on the drive’s performance in regard to reluctance torque. Furthermore, a multi-objective optimization of the machine’s cross-section using neural network models was conducted to enhance performance at a constant AF angle. The reference and improved machine designs were evaluated in a system-level simulation, where the impact was considered of the commutation of currents. A significant improvement in the machine performance was achieved after optimizing the geometry and implementing a fixed AF angle of 10∘.