2010
DOI: 10.1016/j.ijhydene.2010.04.038
|View full text |Cite
|
Sign up to set email alerts
|

Parameter optimization of the biohydrogen real time power generating system using differential evolution algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
1

Year Published

2011
2011
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(11 citation statements)
references
References 9 publications
0
10
0
1
Order By: Relevance
“…they may lack flexibility to handle arbitrary constraints, are sensitive to noise, may require function derivatives and are prone to remain trapped in local minima. [45,46] and Differential Evolution (DE) [47,48], just to name the most well known.…”
Section: Stochastic Optimizationmentioning
confidence: 99%
“…they may lack flexibility to handle arbitrary constraints, are sensitive to noise, may require function derivatives and are prone to remain trapped in local minima. [45,46] and Differential Evolution (DE) [47,48], just to name the most well known.…”
Section: Stochastic Optimizationmentioning
confidence: 99%
“…Na literatura pode-se encontrar diversas aplicações do algoritmo de ED, dentre quais pode-se citar: otimização de processos com controle ótimo (Souza et al, 2015), otimização de parâmetros da energia gerada em sistemas de biohidrogênio (HUANG et al, 2010), sintonia de controladores PID (SOUZA et al, 2011), determinação da difusividade térmica aparente na secagem das frutas (MARIANI et al, 2008), além de inúmeras aplicações em áreas distintas da ciência.…”
Section: Geração Do Candidato: C1[i] = P[i1] + F (P[i2]-p[i3])unclassified
“…To conquer this drawback, metaheuristic algorithms such as Genetic Algorithms (GA) [20][21][22][23][24][25], Simulated Annealing (SA) [26,27], Differential Evolution (DE) [28,29], Particle Swarm Optimization (PSO) [30,31], Artificial Immune System (AIS) [5], Seeker Optimization Algorithm (SOA) [32], Harmony Search (HS) [33,34], Hybrid Artificial Bee Colony (HABC) [19], Artificial Bee Swarm Algorithm (ABSA) [35], P System Based Optimization (PSBO) [36], Teaching-learning-based optimization (TLBO) [37], Biogeography-based optimization [38] and Bird Mating Optimization (BMO) [39] have been applied in this problem. Metaheuristics generally do not need domain information and they are derivative free methods which perform stochastic movements to obtain global optimum point.…”
Section: Introductionmentioning
confidence: 99%