Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
National laser safety standards have only recently been specified for laser pulse widths below 1 ns, with the publication of the ANSI Z136.1-2000 American National Standard for Safe Use of Lasers. A number of in vivo retinal injury studies using ultrashort laser pulses have been documented for pulse widths from nanoseconds to femtoseconds and having wavelengths from 1064 to 530 nm. These studies report data corresponding to the smallest retinal image diameters that can be achieved experimentally. The resulting data have been used to establish the exposure limits for small-source laser emitters. Data have shown that the thresholds decrease with pulse width and with wavelength for minimal retinal spot sizes. In this article we present measurements of the retinal lesion threshold as a function of retinal image size for 150 fs ultrashort laser pulses at 1060 nm. Retinal image size was varied from approximately 48 to 800 μm in diameter using external optics. Thresholds were determined using probit analysis of the data. The retinal spot sizes were calculated using the Gaussian beam propagation and multiple-lens formulas. The thresholds as a function of retinal image size were then compared to previously reported spot size studies. Results of our measurements show that as the retinal image diameter is increased from 48 to 800 μm, the threshold at 24 h postexposure increases from 1 to 54.1 μJ, corresponding to the fluence at the retina decreasing by a factor of five (from 56 to 11 mJ cm−2). Our results also show that as the retinal spot size increases, the radiant exposure necessary to cause a minimal visible lesion decreases, but not in proportion to the retinal image area. This decreasing radiant exposure for increasing retinal spot sizes at 150 fs follows the trends shown for previous studies with pulse duration from 30 ps to 10 s. Thus, extended sources for 150 fs and 1060 nm show no deviation from the trend of decreasing radiant exposure for increasing retinal image sizes. We conclude from our data that the current correction factors used in the laser safety standards also apply to femtosecond laser exposures between 400 and 1400 nm.
National laser safety standards have only recently been specified for laser pulse widths below 1 ns, with the publication of the ANSI Z136.1-2000 American National Standard for Safe Use of Lasers. A number of in vivo retinal injury studies using ultrashort laser pulses have been documented for pulse widths from nanoseconds to femtoseconds and having wavelengths from 1064 to 530 nm. These studies report data corresponding to the smallest retinal image diameters that can be achieved experimentally. The resulting data have been used to establish the exposure limits for small-source laser emitters. Data have shown that the thresholds decrease with pulse width and with wavelength for minimal retinal spot sizes. In this article we present measurements of the retinal lesion threshold as a function of retinal image size for 150 fs ultrashort laser pulses at 1060 nm. Retinal image size was varied from approximately 48 to 800 μm in diameter using external optics. Thresholds were determined using probit analysis of the data. The retinal spot sizes were calculated using the Gaussian beam propagation and multiple-lens formulas. The thresholds as a function of retinal image size were then compared to previously reported spot size studies. Results of our measurements show that as the retinal image diameter is increased from 48 to 800 μm, the threshold at 24 h postexposure increases from 1 to 54.1 μJ, corresponding to the fluence at the retina decreasing by a factor of five (from 56 to 11 mJ cm−2). Our results also show that as the retinal spot size increases, the radiant exposure necessary to cause a minimal visible lesion decreases, but not in proportion to the retinal image area. This decreasing radiant exposure for increasing retinal spot sizes at 150 fs follows the trends shown for previous studies with pulse duration from 30 ps to 10 s. Thus, extended sources for 150 fs and 1060 nm show no deviation from the trend of decreasing radiant exposure for increasing retinal image sizes. We conclude from our data that the current correction factors used in the laser safety standards also apply to femtosecond laser exposures between 400 and 1400 nm.
In earlier studies, we examined the dependence of the laser induced retinal damage threshold on retinal image size for extended-source ocular exposures. We reported the spot-size dependence of the retinal threshold (based on ophthalmic observations at 24 h postexposure) for two pulsewidth regimes: nanosecond-duration (Q-switched) pulses from a doubled Nd:yttrium–aluminum–garnet laser and microsecond-duration pulses from a flashlamp-pumped dye laser at 590 nm. In either case, the retinal threshold was shown to vary with the area (i.e., diameter squared) for image diameters >5 mrad. More recently, we have collected additional data for the intermediate spot-size range (1.5–10 mrad) and have compared both the absolute values and the spot-size trend of retinal thresholds determined via ophthalmoscopic observation at 1 h postexposure to the analogous threshold data collected with observations at 24 h postexposure. These additional data and analyses reinforce our earlier conclusions regarding the threshold vs. spot-size trend and are compared to and reconciled with results from previously published extended-source ocular damage studies. The experimental spot-size trends are also contrasted to the existing laser safety standard treatments of maximum permissible exposure levels for extended-source ocular exposures.
The dependence of retinal damage threshold on laser spot size was examined for two pulse width regimes; nanosecond-duration Q-switched pulses from a doubled Nd:Yttrium–aluminum–garnet laser and microsecond-duration pulses from a flashlamp-pumped dye laser. Threshold determinations were conducted for nominal retinal image sizes ranging from 1.5 to 100 mrad of visual field, corresponding to image diameters of ∼22 μm to 1.4 mm on the primate retina. In addition, base line collimated-beam damage thresholds were determined for comparison to the extended source data. Together, this set of retinal damage thresholds reveals the functional dependence of threshold on spot size. The threshold dose was found to vary with the area of the image for larger image sizes. This experimentally determined trend was shown to agree with the predictions of thermal model calculations of laser-induced retinal damage for spot sizes ≳150 μm. The results are compared to previously published extended source damage thresholds and to the ANSI Z136.1 laser safety standard maximum permissible exposure levels for diffuse reflections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.