Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In classical broadcast models, information is disseminated in synchronous rounds under the constant communication time model, wherein a node may only inform one of its neighbors in each time-unit—also known as the processor-bound model. These models assume either a coordinating leader or that each node has a set of coordinated actions optimized for each originator, which may require nodes to have sufficient storage, processing power, and the ability to determine the originator. This assumption is not always ideal, and a broadcast model based on the node’s local knowledge can sometimes be more effective. Messy models address these issues by eliminating the need for a leader, knowledge of the starting time, and the identity of the originator, relying solely on local knowledge available to each node. This paper investigates the messy broadcast time and optimal scheme in a grid graph, a structure widely used in computer networking systems, particularly in parallel computing, due to its robustness, scalability, fault tolerance, and simplicity. The focus is on scenarios where the originator is located at one of the corner vertices, aiming to understand the efficiency and performance of messy models in such grid structures.
In classical broadcast models, information is disseminated in synchronous rounds under the constant communication time model, wherein a node may only inform one of its neighbors in each time-unit—also known as the processor-bound model. These models assume either a coordinating leader or that each node has a set of coordinated actions optimized for each originator, which may require nodes to have sufficient storage, processing power, and the ability to determine the originator. This assumption is not always ideal, and a broadcast model based on the node’s local knowledge can sometimes be more effective. Messy models address these issues by eliminating the need for a leader, knowledge of the starting time, and the identity of the originator, relying solely on local knowledge available to each node. This paper investigates the messy broadcast time and optimal scheme in a grid graph, a structure widely used in computer networking systems, particularly in parallel computing, due to its robustness, scalability, fault tolerance, and simplicity. The focus is on scenarios where the originator is located at one of the corner vertices, aiming to understand the efficiency and performance of messy models in such grid structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.