Abstract. We investigate a special case of the Induced Subgraph Isomorphism problem, where both input graphs are interval graphs. We show the NP-hardness of this problem, and we prove fixed-parameter tractability of the problem with non-standard parameterization, where the parameter is the difference |V (G)| − |V (H)|, with G and H being the larger and the smaller input graph, respectively. Intuitively, we can interpret this problem as "cleaning" the graph G, regarded as a pattern containing extra vertices indicating errors, in order to obtain the graph H representing the original pattern. We also prove W[1]-hardness for the standard parameterization where the parameter is |V (H)|.