This paper presents static fatigue laboratory experiments conducted in three different configurations. The experiments are designed so as to cause delayed tensile failure in dry Gabbro specimens after the sustained application of a static subcritical load. Results from the static fatigue experiments give a time to failure of the specimen related to the applied static load. In the presented experiments, results spanning up to six orders of magnitude of time to failure were collected for three-point bending, four-point bending, and indirect tensile (Brazilian) specimens. The data supports an exponential relationship between tensile stress and time to failure, noting that a power law relationship is also supported by the data. The salient difference among the configurations is hypothesized to be the size of the region of the specimen that is subjected to a close approximation of the maximum tensile stress. The time to failure at a given nominal tensile stress, the decrease in time to failure associated with a given increase in stress (i.e. the slope in a semi logarithmic plot), and the magnitude of the scatter of the data about the best-fit curve are all observed to correlate inversely with the nominal size of the region subjected to the maximum tensile stress.