“…Regarding the popular metaheuristic algorithms, simulated annealing algorithm [12], genetic algorithm [13,14], particle swarm optimization algorithm [15,16], differential evolution algorithm [17][18][19][20], pattern search [21], artificial bee colony algorithm [22] are widely used for the SCPIP. In addition to these well-known heuristic algorithms, there exist several papers in the literature which consider more recent approaches, such as bacterial foraging algorithm [23,24], teaching-learning-based optimization algorithm [25][26][27], biogeography-based optimization algorithm [28], chaos optimization algorithm [29], artificial fish swarm algorithm [30], bird mating optimizer approach [31], artificial immune system [32], evolutionary algorithm [1], cat swarm optimization algorithm [33], moth-flame optimization algorithm [5], JAYA optimization algorithm [34,35], chaotic whale optimization algorithm [36], imperialist competitive algorithm [37], bee pollinator flower pollination algorithm [38], shuffled complex evolution algorithm [39], memetic algorithm [40], interior search algorithm [41], collaborative swarm intelligence approach [42], and cuckoo search algorithm [43]. On the other hand, it has been proven by No-Free-Lunch theorem [44] that none of these algorithms is able to solve all type of optimization problems.…”