In this paper, the dependence of the charging voltage, stored electrical energy, and the mass of the combusted exothermic mixture on electrical, energy and hydrodynamic characteristics of a high-voltage electrochemical explosion (HVEE) in limited volumes of liquid on is experimentally studied. A comparison with other methods of initiating an electric discharge under similar conditions was made. The results established that the HVEE makes it possible to carry out a high-voltage electric discharge with low energy losses (less than 9%) and to realize an electrical breakdown mode close to aperiodic. It has been found that HVEE can generate pressure waves with an amplitude up to 37% and a pulse up to 45% larger (at a charging voltage of 25 kV or higher) than that of an electric explosion of an initiating metallic conductor of optimum length under the same initial conditions. It was found that an increase in the charging voltage leads to an increase in the amplitude and pulse of the generated pressure wave along a linear dependence. A compre-hensive analysis of the dependences of the energy and hydrodynamic characteristics showed that the main influence on the formation of the pressure wave pulse during the HVEE is provided by both the stored electrical energy and the interconnection between the electrical parameters of the discharge circuit and the mass of the burning exothermic mixture, which determines the shape of the discharge characteristics.