The biologically active form of vitamine D(3) [1alpha,25(OH)(2)D(3)] has recently been described not only to influence bone metabolism but also to exert immunomodulating activities, which may have an impact on bone formation/resorption as well. In this study, we analysed the effects of 1alpha,25(OH)(2)D(3) on the cytokine pattern of porcine bone marrow-derived cells from piglets aged 1-3 weeks. After culture for 1 week, the number of osteoclasts was determined, with tartrate-resistant acid phosphatase (TRAP)-positive, multinucleated cells being considered osteoclasts. Cultured bone marrow cell-derived mRNA was subjected to semiquantitative RT-PCR specific for a panel of porcine cytokines (IL-1alpha, IL-6, IL-8, IL-10, and TNF-alpha). In addition, an immunofluorescence analysis using anti-porcine mAbs specific for IL-1beta, IL-2, IL-4, IL-6, IL-12, TNF-alpha, and IFN-gamma was performed. In order to prove the existence of a porcine homologue of the receptor activator of NF-kappaB ligand (RANKL) bone marrow cell- as well as porcine white blood cell-derived mRNA was investigated by RT-PCR using primer pairs specific for murine RANKL. Cell culture supernatant was analysed for soluble RANKL by means of an ELISA designed for quantification of human RANKL. By means of RT-PCR, expression of IL-1alpha, IL-6, IL-8, IL-10 and TNF-alpha mRNA could be found in cells cultured with and without 1alpha,25(OH)(2)D(3). Immunofluorescence analysis revealed that IL-1, IL-6, and TNF-alpha were produced by both stromal cells and osteoclasts. Besides its known osteoclastogenic effects, 1alpha,25(OH)(2)D(3) tended to downregulate the respective cytokines, but significantly upregulated RANKL expression. The homology between the porcine RANKL-specific sequence and the corresponding human RANKL sequence was 79%. The data found support the idea that porcine bone marrow cell cultures may provide a suitable alternative to murine systems in human osteological research.