Purpose: To determine sex-related differences in the skin blood flow (SkBF) response to exercise, local heating, and acetylcholine (ACh) in children, and to assess nitric oxide contribution to the SkBF response. Methods: Forearm SkBF during local heating (44°C), ACh iontophoresis, and exercise (30-min cycling and 60% of maximum oxygen consumption) was assessed, using laser Doppler fluxmetry, in 12 boys and 12 girls (7–13 y old), with and without nitric oxide synthase inhibition, using Nω-nitro-L-arginine methyl ester iontophoresis. Results: Local-heating-induced and ACh-induced SkBF increase were not different between boys and girls (local heating: 1445% [900%] and 1432% [582%] of baseline, P = .57; ACh: 673% [434%] and 558% [405%] of baseline, respectively, P = .18). Exercise-induced increase in SkBF was greater in boys than girls (528% [290%] and 374% [192%] of baseline, respectively, P = .03). Nω-nitro-L-arginine methyl ester blunted the SkBF response to ACh and during exercise (P < .001), with no difference between sexes. Conclusion: SkBF responses to ACh and local heat stimuli were similar in boys and girls, while the increase in SkBF during exercise was greater in boys. The apparent role of nitric oxide was not different between boys and girls. It is suggested that the greater SkBF response in boys during exercise was related to greater relative heat production and dissipation needs at this exercise intensity. The response to body size-related workload should be further examined.