Abstract:The SCOPE (soil canopy observation of photochemistry and energy fluxes) model has been widely used to interpret solar-induced chlorophyll fluorescence (SIF) and investigate the SIF-photosynthesis links at different temporal and spatial scales in recent years. In the SCOPE model, the fluorescence quantum efficiency in dark-adapted conditions (FQE) for Photosystem II (fqe2) and Photosystem I (fqe1) were two key parameters of SIF emission, which have always been parameterized as fixed values derived from laboratory measurements. To date, only a few studies have focused on evaluating the SCOPE model for SIF interpretation, and the variation of FQE values in the field remains controversial. In this study, the accuracy of the SCOPE model to simulate the canopy SIF was investigated using diurnal experiments on winter wheat. First, ten diurnal experiments were conducted on winter wheat, and the canopy SIF emissions and the SCOPE model's input parameters were directly measured or indirectly retrieved from the spectral radiances, gross primary productivity (GPP) data, and meteorological records. Second, the SCOPE-simulated SIF emissions with fixed FQE values were evaluated using the observed canopy SIF data. The results show that the SCOPE model can reliably interpret the diurnal cycles of SIF variation and provide acceptable results of SIF simulations at the O 2 -B (SIF B ) and O 2 -A (SIF A ) bands with RRMSEs of 24.35% and 23.67%, respectively. However, the SCOPE-simulated SIF B and SIF A still contained large systematical deviations at some growth stages of wheat, and the seasonal cycles of the ratio between SIF B and SIF A (SIF A /SIF B ) cannot be credibly reproduced. Finally, the SCOPE-simulated SIF emissions with variable FQE values were evaluated using the observed canopy SIF data. The simulating accuracy of SIF B and SIF A can be improved greatly using variable FQE values, and the SCOPE simulations track well with the seasonal SIF A /SIF B values with an RRMSE of 20.63%. The results indicated a clear seasonal pattern of FQE values for unbiased SIF simulation: from the erecting to the flowering stage of wheat, the ratio of fqe1 to fqe2 (fqe1/fqe2) gradually increased from 0.05-0.1 to 0.3-0.5, while the fqe2 value decreased from 0.013 to 0.007. Our quantitative results of the model assessment and the FQE adjustment support the use of the SCOPE model as a powerful tool for interpreting the SIF emissions and can serve as a significant reference for future applications of the SCOPE model.