Electrical Discharge Machining (EDM) is a machining method commonly used to produce complex shapes and deep holes by eroding hard metals with an electric arc. There is a growing demand for process simulation using finite element models in order to improve the quality and efficiency of EDM, to reduce costs, to improve resource efficiency, and to facilitate its application in critical areas such as aerospace and mechanical engineering. Finite element models have greatly improved the prediction accuracy of EDM processes, simulated complex hybrid machining processes, and provided important guidance for the optimization of EDM processes. This paper systematically reviews the research progress of finite element modeling for EDM. Finite element method modeling is evaluated mainly in terms of four indicators: material removal rate, surface roughness, tool wear ratio, and recast layer thickness. Firstly, the importance and application of EDM are described, and the EDM finite element method modeling and its advantages are summarized. Then, the single-spark simulation model and the multi-spark simulation model of EDM are compared and discussed. Among the mainstream finite element models, the prediction error of the material removal rate for single-spark simulation ranges from 8.2% to 14.75%, while the prediction error of the recast layer thickness for multi-spark simulation can be as low as 1.98%. Finally, the applications of finite element modeling in EDM hybrid machining processes’ performance prediction and new material machining are summarized, and future research directions and trends in EDM finite element modeling are predicted.