We demonstrate the influence of dressed states on two-mode optical entanglement in a double Λ-type energy level atomic ensemble of parametric amplification four-wave mixing (PA-FWM) processes. By injecting a coherent or Einstein-Podolsky-Rosen field into PA-FWM channels, we investigate the corresponding entanglement. The quantum entanglement may be enhanced or suppressed via a bright state or a dark state. In free space, the two-mode entanglement is determined by nonlinear gain, which can be manipulated by field dressing in an atomic ensemble (i.e. Autler-Towns splitting, dressed enhancement/ suppression of entanglement). However, in a ring cavity, the cavity dressing brings about the AT-like splitting of entanglement. Such an entanglement profile may be modified by field dressing through vacuum Rabi splitting, vacuum-induced enhancement and suppression of entanglement.