ResumenSe presenta el diseño de un arreglo circular de antenas con un difractor de geometría variable colocado en su interior. La idea es disponer de una metodología para la simulación de diversos arreglos circulares de antenas para trabajar en rangos de frecuencias no ionizantes, una limitante de los rayos X en exámenes tales como las mamografías. El arreglo es modelado utilizando herramientas del electromagnetismo computacional: 1) el método de diferencias finitas en el dominio del tiempo, para transformar las ecuaciones diferenciales de Maxwell en ecuaciones de diferencia finita y resolverlas; 2) el método de capas perfectamente acopladas, para establecer las condiciones de frontera de absorción del sistema; y 3) las condiciones de conductor eléctrico perfecto, para modelar el difractor. El algoritmo diseñado asegura que no existen reflexiones espurias que puedan afectar las lecturas de los sensores y el comportamiento electromagnético del sistema. Los resultados muestran que es factible emplear el arreglo de antenas propuesto para el desarrollo de un sistema de detección temprana de cáncer de mama operando con frecuencias no ionizantes.
Palabras clave: arreglo circular de antenas, diferencias finitas, capas perfectamente acopladas, electromagnetismo computacional
Development of a Circular Antenna Array using Computational Electromagnetics Tools AbstractThe design of a circular antenna array, with a variable geometry diffracting device placed in it. The idea is to develop a methodology for the simulation of circular antenna array to work in frequency non-ionizing ranges, a limitation of X ray exams such as those for early detection of breast cancer. The array is modeled using computational electromagnetics tools: 1) The method of finite differences in time domain, to transform Maxwell differential equations into finite difference equations to solve them. 2) the method of perfectly matched layers, to establish the absorbing boundary conditions of the system and 3) the conditions of perfect electrical conductor to model the diffracting device. The designed algorithm ensures that there are no spurious reflections which could affect the readings of the sensors and the electromagnetic behavior of the system. Results show that the proposed antenna array is suitable for the development of a system for the early detection of breast cancer working at non ionizing frequencies.