The paper presents the methodology for designing the load bearing elements of tail section of a light aircraft through the sequential application of methods of parametric and topological optimization. First, we analyzed the loads acting on the aircraft at its maneuvering in the vertical and horizontal planes. Then, for these loads, by the parametric optimization method, we selected the locations of ribs of the tail section of the aircraft, which were subsequently used to develop individual forms of ribs based on the topology optimization method. Next, we carried out parametric optimization of layup angles of polymer composite material, intended for the production of ribs. Finally, we developed a structural layout for the load bearing elements of the fuselage, which meets the criteria of minimum weight when restrictions are imposed on the level of stresses in some layers of the composite material.