Abstract. We review some recent extensions of the so-called generalized empirical likelihood method, when the Kullback distance is replaced by some general convex divergence. We propose to use, instead of empirical likelihood, some regularized form or quasi-empirical likelihood method, corresponding to a convex combination of Kullback and χ 2 discrepancies. We show that for some adequate choice of the weight in this combination, the corresponding quasi-empirical likelihood is Bartlett-correctable. We also establish some non-asymptotic exponential bounds for the confidence regions obtained by using this method. These bounds are derived via bounds for self-normalized sums in the multivariate case obtained in a previous work by the authors. We also show that this kind of results may be extended to process valued infinite dimensional parameters. In this case some known results about selfnormalized processes may be used to control the behavior of generalized empirical likelihood.