Tank heel minimization is a significant issue in the design of LNG fuel tanks because it is associated with stable suction pump operation and thermal shock requirements during LNG bunkering. This study examined how the LNG tank heel is minimized, maintaining a suction pump fully submerged in LNG during dynamic vessel motion. The study assumed two LNG fuel tanks mounted on the forward deck of a 50,000 deadweight class oil product carrier. Information on the dimensions and shape of the LNG fuel tank was determined from Wartsila’s brochure, and the specifications of Vanzetti’s suction pump were referred to. The LNG fuel tank and LNG heel were modeled as rigid elements and hydrodynamically smoothed-particles, respectively. The number of particles could be determined by performing even keel analyzes by adding or subtracting particles until the target head was satisfied under the gravity load. To simulate the motion of the LNG fuel tank, the pitch and roll periods and amplitudes of the ship were calculated using the DNV classification rules. Visual observations of the dynamic flow during the pitch and roll motions with respect to the ship’s center of mass showed that the roll motion was more critical from the viewpoint of the LNG heel than the pitch motion. After performing the simulations for three cycles of roll and pitch motions, the suction pump submergence was reviewed in the last cycle. Under the conditions assumed in this study, a filling ratio of 15% was determined as the minimum LNG tank heel. Although the LNG heel has customarily been determined, the LNG heel needs to be determined through hydrodynamic analyses of each vessel because it depends on the shape of the fuel tank and the vessel motion characteristics.