The use of phase change material (PCM) as a thermal energy storage system integrated in new buildings, and as retrofits in old buildings, proved its merit as promising renewable energy source. Heating and cooling building applications of PCM have been studied by plenty of scientists, globally, on the basis of numerical and experimental analysis. The performed experiments have mainly focused on one application—active or passive—using permanent prototype design for a certain duration and weather condition. The current study is a new review that focuses on two complementary aspects: (1) Reviewing latest studies in PCM domain and assessing the thermal performance of implemented prototypes within the conducted PCM experimental studies, namely, the effect of the design on the number of acceptable variables and possible PCM applications; and (2) suggesting a new, advanced, flexible, and modular prototype designed to enable several applications of PCM to be adapted and combined within the model. It was implied that the new design allows different configurations that are lacking in the literature and serves for future PCM building applications of thermal analysis towards PCM integration optimization, as an attempt for transforming residential compartments into net zero energy buildings. The designed prototype overcomes the deficiencies found in previous reviewed experimental facilities.