Current predictive emission monitoring (PEM) techniques are briefly reviewed and the concept for a general predictive model was favorably evaluated. Utilizing the commercial process simulation software ASPEN PLUS®, a one dimensional model based on fundamental principles of gas turbine thermodynamics and combustion processes was constructed. Employing a set of 22 reactions including the Zeldovich mechanism, the model predicted for thermal NOx formation. It accounted for combustor geometry, dilution air injection along the combustor annulus, convective heat transfer across the liner, flame length, and full-load inlet flows. The combustor was subdivided into slices, each of which was modeled by a plug flow reactor, giving insight into profiles of NOx formation, species concentration and temperature along the combustor’s length, as well as quantifying the residence time in the combustor. The simulation predicted the levels of NOx for a particular gas turbine combustor and determined the effects of various parameters, such as flame length, hydrocarbon conversion ratio and recycle zones.