2022
DOI: 10.15282/ijame.13.2.2016.5.0277
|View full text |Cite
|
Sign up to set email alerts
|

Parametric optimization of end milling process under minimum quantity lubrication with nanofluid as cutting medium using pareto optimality approach

Abstract: In this paper a genetic algorithm based multi-objective optimization approach is applied in order to predict the optimal machining parameters for the end milling process of aluminium alloy 6061 T6 combined with minimum quantity lubrication (MQL) conditions using waterbased TiO2 nanofluid as cutting fluid. The optimization is carried out employing a parametric model (in terms of input cutting parameters, i.e., cutting speed, feed rate, depth of cut, MQL flow rate and % volume concentration of nanofluid) and exp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 9 publications
(6 citation statements)
references
References 52 publications
0
5
0
1
Order By: Relevance
“…The statistical analysis and the experimented values fall within the range and goes well with the previous research works. [39][40][41]…”
Section: Cutting Forcementioning
confidence: 99%
“…The statistical analysis and the experimented values fall within the range and goes well with the previous research works. [39][40][41]…”
Section: Cutting Forcementioning
confidence: 99%
“…Nanofluids are popular heat transfer fluids made up of a base fluid and nanoparticles. The execution of nanoparticles into heat transfer base fluid significantly enhances the heat transfer performance of the working fluids [2][3][4][5][6][7]. Solid nanoparticles have a higher thermal conductivity which supports the overall thermal and hydrodynamic properties of the heat transfer fluid as investigated by Li et al [8] and Cheng et al [9].…”
Section: Introductionmentioning
confidence: 65%
“…Najiha ve arkadaşlarının yaptığı çalışmada, [28] kesme sıvısı olarak su bazlı TiO2 nanoyakıt kullanılarak minimum miktarda yağlama (MQL) koşulları ile kombine edilmiş 6061 T6 alüminyum alaşımının uç frezeleme işlemi için uygun değer işleme parametrelerini tahmin etmek için genetik algoritmaya dayalı çok amaçlı bir optimizasyon yaklaşımı uygulanmıştır. Optimizasyon, uygulanan MOGA-II algoritmasının özelliklerini kullanarak parametrik bir model (giriş kesme parametreleri, kesme hızı, besleme hızı, kesme derinliği, MQL akış oranı ve % hacim konsantrasyonu açısından) kullanılarak gerçekleştirilmiştir.…”
Section: Hafif Metallerin İşlenmesinde Minimum Miktarda Yağlama Sistemi Uygulamalarıunclassified