The current paper is concentrated on the mechanical and machining process exploration of metallic nano-lubricant with the concept of tri-hybridization with improved lubricative and cooling properties by using TiO2, ZnO and Fe2O3 metallic nano particles with neat cold-pressed coconut oil in a fixed volumetric proportion (10:90). End milling of gummy material like aluminium requires a solution to the conventional dry and wet machining due to high productivity requirement and to obtain good surface quality. So, the prepared nanofluids were tested for their rheological behavior and latter introduced into milling of AA7075 as a solution to the above stated problem. Overall, the nanofluids gave good performance when compared to conventional methods. Furthermore, the results obtained from the experiments confirm that the trio-hybridized lubricant has reduced the cutting force, tool wear and surface roughness in an improved way when related to monotype nano fluids. The response surface methodology is performed to evaluate the interaction of process parameters in minimum quantity lubrication environment with nano fluids. The results show that the cutting forces, surface roughness, tool wear was minimized while machining with hybrid cutting fluids and well within the desirability.