2023
DOI: 10.12913/22998624/169572
|View full text |Cite
|
Sign up to set email alerts
|

Parametric Prediction of FDM Process to Improve Tensile Properties Using Taguchi Method and Artificial Neural Network

Abstract: Fused deposition modeling (FDM) is a popular 3D printing technique that creates parts by heating, extruding, and depositing filaments made of thermoplastic polymers. The processing parameters have a considerable impact on the characteristics of FDM-produced parts. This paper focuses on the parametric prediction of the FDM process to predict ultimate tensile strength and determine a mathematical model using the Taguchi method and Artificial Neural Network. Five manufacturing variables, such as layer thickness, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 0 publications
0
0
0
Order By: Relevance