The conventional design of steel structure objects relies on a first-order elastic analysis, where the entire object is treated as a set of individual structural elements requiring time-consuming, semi-empirical design calculations. Such an approach leads to inefficient design time and excessive material consumption and may additionally result in designing on the verge of structural safety. The AEC sector's technological and digitization advancement process forces designers to use advanced design methods. Hence, it is necessary to indicate the benefits of using effective optimization. The paper presents a comparative analysis of steel domes using two design approaches: traditional first-order analysis and an advanced second-order analysis. The latter method considers the influence of structural deformation on the magnitude of internal forces. Eight models were developed, varying in terms of the connection's stiffness. The work results identify the differences between the two selected design approaches and present opportunities for further structural performance of steel structures.