The mechanical properties of certain flexible core materials of ship structure sandwich panels, having skins made of metallic or composite laminates may be significantly influenced by the temperature variations that may occur during the operational loading. At the same time, the improving knowledge of the behaviour of these panels in terms of bending strength and other stress / strain related aspects in various harsh conditions increases their superiority in terms of weight-to-strength ratio, high stiffness, easy to manufacture, acoustic and thermal insulation. In the paper, the behaviour of the ship structural rectangular sandwich panels to the mechanical and thermal loading are presented. The sandwiches have a special core of 20 mm and skins made out of different materials (glass fiber reinforced polyester, steel and aluminium) with a thickness of 3 mm. Analysis consists of the behaviour of the composite sandwich panels in the bending test at constant speed by the three-point method, for three distances between different supports, by measuring the maximum displacement and force applied to the specimens under various thermal fields. The sandwich structures are also thermally analysed, determining their thermal conductivity by the heat flow measurement method. The experimental results are compared with the results obtained by finite element analysis in numerical simulation of all modelling cases.