We report on experimental and theoretical studies of Čerenkov-type second-harmonic generation in random nonlinear photonic structures with different two-dimensional distributions of the ferroelectric domains. We utilize Čerenkov-type second-harmonic generation spectroscopy to estimate the average ferroelectric domain size by analyzing the spatial Fourier spectrum of the domain patterns. This is measured by scanning the Čerenkov second-harmonic signal for different angles of incidence and light polarizations of the fundamental wave. By comparing the experimental results with numerically simulated Fourier spectra, the corresponding domain patterns are retrieved, which are in a good correspondence with images obtained by Čerenkov-type second-harmonic generation microscopy.