The verification of contemporary software systems is challenging, because they are heavily parameterised containing components, the number and connections of which cannot be a priori fixed. We consider the multi-parameterised verification of safety properties by refinement checking in the context of labelled transition systems (LTSs). The LTSs are parameterised by using first-order constructs, sorts, variables, and predicates, while preserving compositionality. This allows us to parameterise not only the number of replicated components but also the system topology, the connections between the components. We aim to solve a verification task in the parameterised LTS formalism by determining cut-offs for the parameters. As the main contribution, we convert this problem into the unsatisfiability of a first-order formula and provide a SAT modulo theories (SMT)-based semi-algorithm for dynamically, i.e., iteratively, computing the cut-offs. The algorithm will always terminate for topologies expressible in the ∃ * ∀ * fragment of first-order logic. It also enables us to consider systems with topologies beyond this fragment, but for these systems, the algorithm is not guaranteed to terminate. We have implemented the approach on top of the Z3 SMT solver and successfully applied it to several system models. As a running example, we consider the leader election phase of the Raft consensus algorithm and prove a cut-off of three servers which we conjecture to be the optimal one.