Parametrization of Non-Bonded Force Field Terms for Metal-Organic Frameworks Using Machine Learning Approach
Vadim V. Korolev,
Yurii M. Nevolin,
Thomas A. Manz
et al.
Abstract:The enormous structural and chemical diversity of metal-organic frameworks (MOFs) forces researchers to actively use simulation techniques on an equal footing with experiments. MOFs are widely known for outstanding adsorption properties, so precise description of host-guest interactions is essential for high-throughput screening aimed at ranking the most promising candidates. However, highly accurate ab initio calculations cannot be routinely applied to model thousands of structures due to the demanding comput… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.