2016
DOI: 10.1063/1.4963388
|View full text |Cite
|
Sign up to set email alerts
|

Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes

Abstract: We present a parametrization of the pair correlation function and the static structure factor of the Coulomb one component plasma (OCP) from the weakly coupled regime to the strongly coupled regime. Recent experiments strongly suggest that the OCP model can play the role of a reference system for warm dense matter. It can provide the ionic static structure factor that is necessary to interpret the x-ray Thomson scattering measurements, for instance. We illustrate this with the interpretation of a x-ray diffrac… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
22
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 32 publications
(22 citation statements)
references
References 61 publications
0
22
0
Order By: Relevance
“…In the context of satisfaction of the Cauchy‐Bunyakovsky‐Schwarz inequality , we have checked up to seven different static schemes of determination of the one‐component, strongly coupled classical plasma SSF: the classical hyper‐netted chain (HNC) approximation [37], the bridge function‐corrected HNC by Ng [38], two different versions of the variational modified HNC Scheme, , and three different fitting procedures; see Figure . It can be seen that two schemes of SSF calculation violate the Cauchy–Bunyakovsky–Schwarz inequality, which leads to the non‐physical results for the DSF under these conditions.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…In the context of satisfaction of the Cauchy‐Bunyakovsky‐Schwarz inequality , we have checked up to seven different static schemes of determination of the one‐component, strongly coupled classical plasma SSF: the classical hyper‐netted chain (HNC) approximation [37], the bridge function‐corrected HNC by Ng [38], two different versions of the variational modified HNC Scheme, , and three different fitting procedures; see Figure . It can be seen that two schemes of SSF calculation violate the Cauchy–Bunyakovsky–Schwarz inequality, which leads to the non‐physical results for the DSF under these conditions.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…The Ag‐Ag PDF exhibits a well‐defined structure, characterized by a strong peak reminiscent of the OCP. An effective ionization of Ag can be obtained by matching the peak with an analytical formulation for the PDF of the OCP . This matching procedure involves two parameters: the mean ion radius a = (3/4 πn ) 1/3 , with n the ion density, and the coupling parameter Γ = Q 2 e 2 / akT , with Q the ionization.…”
Section: Orbital‐free Molecular Dynamics Simulationsmentioning
confidence: 99%
“…An effective ionization of Ag can be obtained by matching the peak with an analytical formulation for the PDF of the OCP. [12] This matching procedure involves two parameters: the mean ion radius a = (3/4 n) 1/3 , with n the ion density, and the coupling parameter Γ = Q 2 e 2 /akT, with Q the ionization. From 100 to 400 eV, the Ag-Ag peak does not evolve, and the Ag effective ionization must be doubled to compensate for the fourfold increase in temperature.…”
Section: Orbital-free Molecular Dynamics Simulationsmentioning
confidence: 99%
“…Knowing the ionic density and the standard one‐component plasma (OCP) pdfs for any Γ, one can get the value of Γ e that matches best the OFMD simulation results. This procedure is automated thanks to an analytical formulation of OCP pdfs and a parameterization of the OCP structural characteristics . Finally, knowing the temperature and using the best value of Γ e , one can deduce the effective charge Q α as a by‐product of the simulation, not as an input parameter as in a classical MD simulation.…”
Section: Orbital‐free Simulationsmentioning
confidence: 99%