We present a multilayer approach to classify articles of clothing within a pile of laundry. The classification features are composed of color, texture, shape, and edge information from 2D and 3D data within a local and global perspective. The contribution of this paper is a novel approach of classification termed L-M-H, more specifically LC-S-H for clothing classification. The multilayer approach compartmentalizes the problem into a high (H) layer, multiple midlevel (characteristics (C), selection masks (S)) layers, and a low (L) layer. This approach produces "local" solutions to solve the global classification problem. Experiments demonstrate the ability of the system to efficiently classify each article of clothing into one of seven categories (pants, shorts, shirts, socks, dresses, cloths, or jackets). The results presented in this paper show that, on average, the classification rates improve by +27.47% for three categories , +17.90% for four categories, and +10.35% for seven categories over the baseline system, using SVMs (Chang and Lin, 2001).