2007
DOI: 10.1007/s00200-007-0054-9
|View full text |Cite
|
Sign up to set email alerts
|

Parametrizing compactly supported orthonormal wavelets by discrete moments

Abstract: We discuss parametrizations of filter coefficients of scaling functions and compactly supported orthonormal wavelets with several vanishing moments. We introduce the first discrete moments of the filter coefficients as parameters. The discrete moments can be expressed in terms of the continuous moments of the related scaling function. To solve the resulting polynomial equations we use symbolic computation and in particular Gröbner bases. The cases of four to ten filter coefficients are discussed and explicit p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
6
0
2

Year Published

2009
2009
2017
2017

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(8 citation statements)
references
References 35 publications
0
6
0
2
Order By: Relevance
“…We want to emphasize that the framework can be applied to other parametrizations like those based on moments [29] or even to continuous wavelet transform [24]. Algorithmically, the only thing that would change is the way a kernel related to a given wavelet is computed.…”
Section: Extension To Other Wavelet Parametrizationsmentioning
confidence: 99%
“…We want to emphasize that the framework can be applied to other parametrizations like those based on moments [29] or even to continuous wavelet transform [24]. Algorithmically, the only thing that would change is the way a kernel related to a given wavelet is computed.…”
Section: Extension To Other Wavelet Parametrizationsmentioning
confidence: 99%
“…The parameterization is offered by the two Rotation matrices. The condition imposed on the two parameters is that 4 π = + u t (14) III. BUILDING A PARA-UNITARY MATRIX Having made a convincing approach to the design, the problem, which is now left out, is the construction of Paraunitary matrix of any given order The matrix, which is under context, is the one that renders the power of extending the proposed method to M-Band system.…”
Section: Parameterization Of Waveletsmentioning
confidence: 99%
“…Several authors [2,[9][10][11][12][13][14][15] have studied parameterization of compactly supported orthonormal wavelets extensively. Conventionally, parameterization is achieved either by factoring polyphase matrix [16] corresponding to analysis filters using Householder transformation or by employing lifting scheme.…”
Section: Parameterization Of Waveletsmentioning
confidence: 99%
“…Se han publicado varios FRP como los Daubechies, los Coiflets y los Symlets [14]. Y también se han publicado ecuaciones paramétricas de filtros que permiten generar FRP [11,16,15,13,8,10].…”
Section: Introductionunclassified
“…Además, se han propuesto varias parametrizaciones, así como métodos de parametrización. En[11] se discute la parametrización de coeficientes de funciones de escalamiento (ortogonales a las funciones wavelet) con varios momentos de desvanecimiento. En[16] se presentan parametrizaciones de wavelets ortonormales con soporte en el intervalo [0, 2N − 1) en donde N es un entero par que involucra N − 1 parámetros que varían en el intervalo [0, 2π).En cuanto a aplicaciones de las ecuaciones paramétricas, en[3] se utilizan parametrizaciones de filtros y se presenta una técnica para calcular la mejor wavelet para una imagen dada.…”
unclassified