2019
DOI: 10.11591/eecsi.v6i0.1973
|View full text |Cite
|
Sign up to set email alerts
|

Paraphrase Detection Using Manhattan's Recurrent Neural Networks and Long Short-Term Memory

Abstract: Natural Language Processing (NLP) is a part of artificial intelligence that can extract sentence structures from natural language. Some discussions about NLP are widely used, such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) to summarize papers with many sentences in them. Siamese Similarity is a term that applies repetitive twin network architecture to machine learning for sentence similarity. This architecture is also called Manhattan LSTM, which can be applied to the case of detectin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?