Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context Atypical parathyroid tumor (APT) represents a neoplasm characterized by histological features typical of parathyroid carcinoma (PC) but lacking local infiltration and/or distant metastasis, leading to uncertainty regarding its malignant potential. Objective To characterize the molecular landscape and deregulated pathways in APT. Methods Whole exome sequencing (WES) was conducted on 16 APTs. DNA from tumors and matched peripheral blood underwent WES using Illumina HiSeq3000. Results A total of 192 nonsynonymous variants were identified. The median number of protein-altering mutations was 9. The most frequently mutated genes included BCOR, CLMN, EZH1, JAM2, KRTAP13-3, MUC16, MUC19, and OR1S1. Seventeen mutated genes belong to the Cancer Gene Census list. The most consistent hub genes identified through STRING network analysis were ATM, COL4A5, EZH2, MED12, MEN1, MTOR, PI3, PIK3CA, PIK3CB, and UBR5. Deregulated pathways included the PI3 K/AKT/mTOR pathway, Wnt signaling, and extracellular matrix organization. Variants in genes such as MEN1, CDC73, EZH2, PIK3CA, and MTOR, previously reported as established or putative/candidate driver genes in benign adenoma (PA) and/or PC, were also identified in APT. Conclusions APT does not appear to have a specific molecular signature but shares genomic alterations with both PA and PC. The incidence of CDC73 mutations is low, and it remains unclear whether these mutations are associated with a higher risk of recurrence. Our study confirms that PI3 K/AKT/mTOR and Wnt signaling represents the pivotal pathways in parathyroid tumorigenesis and also revealed mutations in key epigenetic modifier genes (BCOR, KDM2A, MBD4, and EZH2) involved in chromatin remodeling, DNA, and histone methylation.
Context Atypical parathyroid tumor (APT) represents a neoplasm characterized by histological features typical of parathyroid carcinoma (PC) but lacking local infiltration and/or distant metastasis, leading to uncertainty regarding its malignant potential. Objective To characterize the molecular landscape and deregulated pathways in APT. Methods Whole exome sequencing (WES) was conducted on 16 APTs. DNA from tumors and matched peripheral blood underwent WES using Illumina HiSeq3000. Results A total of 192 nonsynonymous variants were identified. The median number of protein-altering mutations was 9. The most frequently mutated genes included BCOR, CLMN, EZH1, JAM2, KRTAP13-3, MUC16, MUC19, and OR1S1. Seventeen mutated genes belong to the Cancer Gene Census list. The most consistent hub genes identified through STRING network analysis were ATM, COL4A5, EZH2, MED12, MEN1, MTOR, PI3, PIK3CA, PIK3CB, and UBR5. Deregulated pathways included the PI3 K/AKT/mTOR pathway, Wnt signaling, and extracellular matrix organization. Variants in genes such as MEN1, CDC73, EZH2, PIK3CA, and MTOR, previously reported as established or putative/candidate driver genes in benign adenoma (PA) and/or PC, were also identified in APT. Conclusions APT does not appear to have a specific molecular signature but shares genomic alterations with both PA and PC. The incidence of CDC73 mutations is low, and it remains unclear whether these mutations are associated with a higher risk of recurrence. Our study confirms that PI3 K/AKT/mTOR and Wnt signaling represents the pivotal pathways in parathyroid tumorigenesis and also revealed mutations in key epigenetic modifier genes (BCOR, KDM2A, MBD4, and EZH2) involved in chromatin remodeling, DNA, and histone methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.