Abstract. The aim of the present study was to investigate the protective effect of cytokine response modifier A (CrmA) released from chitosan (CS) microspheres in a controlled manner on interleukin (IL)-1β-induced inflammation and apoptosis in chondrocytes. The CrmA release kinetics were characterized by an initial burst release, which was reduced to a linear release over 8 days. Furthermore, chondrocytes were isolated from 1-week-old Sprague Dawley rats. The cell culture was established by stimulation with 10 ng/ml IL-1β and subsequent incubation with CS-CrmA microspheres. Following stimulation with IL-1β, the viability of chondrocytes was decreased. However, the cell viability was attenuated by CS-CrmA microspheres as revealed by a cell counting kit-8 assay. CS-CrmA microspheres significantly inhibited IL-1β-induced inflammation in chondrocytes by attenuating increases in the gene expression levels of inducible nitric oxide synthase and cyclooxygenase-2, as well as the concentrations of nitric oxide and prostaglandin E2. CS-CrmA microspheres significantly decreased the number of apoptotic chondrocytes induced by IL-1β as indicated by a terminal deoxyribonucleotide transferase deoxyuridine triphosphate nick-end labeling assay. In addition, CS-CrmA microspheres blocked IL-1β-induced chondrocyte apoptosis by increasing B-cell lymphoma 2 (Bcl-2) and decreasing Bcl-2-associated X protein, caspase-3 and poly adenosine diphosphate-ribose polymerase expression at the mRNA and protein levels, as indicated by reverse-transcription quantitative polymerase chain reaction and western blot analysis, respectively. The results of the present study revealed that CS-CrmA microspheres, as a controlled release system of CrmA, may protect rat chondrocytes from IL-1β-induced inflammation and apoptosis via regulating inflammatory and apoptosis-associated genes.