Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse biological activities. While several studies have revealed that Fgf23 plays important roles in the regulation of phosphate and vitamin D metabolism, the additional physiological roles of Fgf23 remain unclear. Although it is believed that osteoblasts/osteocytes are the main sources of Fgf23, we previously found that Fgf23 mRNA is also expressed in the mouse thymus, suggesting that it might be involved in the immune system. In this study we examined the potential roles of Fgf23 in immunological responses. Mouse serum Fgf23 levels were significantly increased following inoculation with Escherichia coli or Staphylococcus aureus or intraperitoneal injection of lipopolysaccharide. We also identified activated dendritic cells and macrophages that potentially contributed to increased serum Fgf23 levels. Nuclear factor-kappa B (NF-κB) signaling was essential for the induction of Fgf23 expression in dendritic cells in response to immunological stimuli. Moreover, we examined the effects of recombinant Fgf23 protein on immune cells in vitro. Fgfr1c, a potential receptor for Fgf23, was abundantly expressed in macrophages, suggesting that Fgf23 might be involved in signal transduction in these cells. Our data suggest that Fgf23 potentially increases the number in macrophages and induces expression of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine. Collectively, these data suggest that Fgf23 might be intimately involved in inflammatory processes.Key words fibroblast growth factor (Fgf); Fgf23; macrophage; dendritic cell; inflammationThe fibroblast growth factors (Fgfs) family consists of 22 polypeptide growth factors that are widely expressed in developing and adult tissues and regulate diverse biological processes, including angiogenesis, mitogenesis, cellular differentiation, and tissue repair. 1,2) Fgfs can be classified into three groups, canonical, intracellular, and hormone-like Fgfs. The canonical Fgfs bind to and activate Fgf receptors (Fgfrs) on the cell surface, resulting in the activation of several cytoplasmic signal transduction pathways. These canonical Fgfs function in a paracrine manner. The intracellular Fgfs act as intracellular signaling molecules in an Fgfr-independent manner. Hormone-like Fgfs, including Fgf15/19, Fgf21, and Fgf23, depends on Fgfrs to elicit biological responses, although they potentially function in an endocrine manner. 3) One of these hormone-like Fgfs, Fgf23, was originally identified in mice and humans by a DNA database search and was a well-known physiological regulator of phosphate and vitamin D metabolisms. [3][4][5][6] Fgf23 is produced by osteoblasts/osteocytes in response to 1,25-dihydroxyvitamine D, the biologically active form of vitamin D. 3,5,6) Secreted Fgf23 increases urinary phosphate excretion by reducing luminal expression of sodium-phosphate co-transporters in the proximal tubule. Secreted Fgf23 also attenuates systemic levels of 1,25-dihydroxyvitamine D, which stimulates phosphate...