BackgroundAim of this study is to describe the relationship between anthropometric traits and educational attainment among Estonian schoolchildren born between 1937 and 1962. We asked whether height, cranial volume and face width (a testosterone-dependent trait), measured in childhood predict later educational attainment independently of each other, family socioeconomic position (SEP) and sex. Associations between morphometric traits and education and their interactions with biosocial variables are of scholarly importance because higher education is nearly universally associated with low fertility in women, and often with high fertility in men. Hence, morphometric traits associated with educational attainment are targeted by natural selection and describing the exact nature of these associations is relevant for understanding the current patterns of evolution of human body size.MethodsData on morphometric measurements and family background of 11,032 Estonian schoolchildren measured between seven and 19 years of age were obtained from the study performed by Juhan Aul between 1956 and 1969. Ordinal logistic regression was used for testing the effects of morphometric traits, biosocial variables and their interaction on the cumulative probability of obtaining education beyond primary level.ResultsOf biosocial variables, family SEP was the most important determinant of educational attainment, followed by the sex, rural vs urban origin and the number of siblings. No significant interactions with morphometric traits were detected, i.e., within each category of SEP, rural vs urban origin and sex, taller children and those with larger heads and relatively narrower faces were more likely to proceed to secondary and/or tertiary education. The effect of height on education was independent of cranial volume, indicating that taller children did not obtain more educations because their brains were larger than those of shorter children; height per se was important.ConclusionsOur main finding – that adjusting for other morphometric traits and biosocial variables, morphometric traits still robustly predicted educational attainment, is relevant for understanding the current patterns of evolution of human body size. Our findings suggest that fecundity selection acting on educational attainment could be partly responsible for the concurrent selection for smaller stature and cranial volume in women and opposite trends in men.