The amygdala plays a critical role in the acquisition and consolidation of fear-related memories. Recent studies have demonstrated that ADP-ribosylation of histones, accelerated by PARPs, affects the chromatin structure and the binding of chromatin remodeling complexes with transcription factors. Inhibition of PARP-1 activity during the labile phase of re-consolidation may erase memory. Accordingly, we investigated the possibility of interfering with fear conditioning by PARP-1 inhibition. Herein, we demonstrate that injection of PARP-1 inhibitors, specifically into the CeA or i.p., in different time windows post-retrieval, attenuates freezing behavior. Moreover, the association of memory with pharmacokinetic timing of PARP inhibitor arrival to the brain enabled/achieved attenuation of a specific cue-associated memory of fear but did not hinder other memories (even traumatic events) associated with other cues. Our results suggest using PARP-1 inhibitors as a new avenue for future treatment of PTSD by disrupting specific traumatic memories in a broad time window, even long after the traumatic event. The safety of using these PARP inhibitors, that is, not interfering with other natural memories, is an added value.