Abstract-On the one hand, performance and fault-tolerance of interconnection networks are key design issues for high performance computing (HPC) systems. On the other hand, cost should be also considered. Indirect topologies are often chosen in the design of HPC systems. Among them, the most commonly used topology is the fat-tree. In this work, we focus on getting the maximum benefits from the network resources by designing a simple indirect topology with very good performance and fault-tolerance properties, while keeping the hardware cost as low as possible. To do that, we propose some extensions to the fat-tree topology to take full advantage of the hardware resources consumed by the topology. In particular, we propose three new topologies with different properties in terms of cost, performance and fault-tolerance. All of them are able to achieve a similar or better performance results than the fat-tree, providing also a good level of fault-tolerance and, contrary to most of the available topologies, these proposals are able to tolerate also faults in the links that connect to end nodes.