“…However, the artificial features depend on human experience to a large extent, and the deep information of image is not easy to be mined, so the effectiveness of artificial features is hard to be ensured. Therefore, the deep learning based vehicle recognition algorithms are paid more attention in recent years, which include some traditional deep learning models such as Convolutional Neural Network model [13][14][15], Deep Belief Network model [16][17], Transfer learning model [18][19][20], Restricted Boltzmann Machine [21][22][23], and some improved models such as Conv5 [24], Teacher-Student Network [25], Parsing-based View-aware Embedding Network [26], Semantics-guided Part Attention Network [27], the model fused by multiple networks [28], and the network based on reconstruction [29], et al For the supervised vehicle classification problem, these deep learning methods have achieved good results, but for vehicle face matching problem under the conditions that the times of each vehicle being captured is very limited and the number of the training samples is too small, the universalities of these models are not very well. Therefore, under a limited number of vehicle face samples, it is very meaningful to propose a vehicle re-identification algorithm with good robustness and universality.…”