2021
DOI: 10.48550/arxiv.2109.13999
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

ParSNIP: Generative Models of Transient Light Curves with Physics-Enabled Deep Learning

Kyle Boone

Abstract: We present a novel method to produce empirical generative models of all kinds of astronomical transients from datasets of unlabeled light curves. Our hybrid model, that we call ParSNIP, uses a neural network to model the unknown intrinsic diversity of different transients and an explicit physics-based model of how light from the transient propagates through the universe and is observed. The ParSNIP model predicts the time-varying spectra of transients despite only being trained on photometric observations. Wit… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 52 publications
0
1
0
Order By: Relevance
“…Xu et al 2013;Kamdar et al 2016), inferred the halo mass distribution function (Charnock et al 2020) or predicted the galaxy-halo connection (Agarwal et al 2018;Jo & Kim 2019) using ML techniques. Finally, using ML cosmological parameters could be derived from redshift surveys (Ramanah et al 2019;Ntampaka et al 2020), supernova data (Escamilla-Rivera et al 2020;Wang et al 2020;Boone 2021) or maps of e.g. gas and stars (Villaescusa-Navarro et al 2021).…”
Section: Introductionmentioning
confidence: 99%
“…Xu et al 2013;Kamdar et al 2016), inferred the halo mass distribution function (Charnock et al 2020) or predicted the galaxy-halo connection (Agarwal et al 2018;Jo & Kim 2019) using ML techniques. Finally, using ML cosmological parameters could be derived from redshift surveys (Ramanah et al 2019;Ntampaka et al 2020), supernova data (Escamilla-Rivera et al 2020;Wang et al 2020;Boone 2021) or maps of e.g. gas and stars (Villaescusa-Navarro et al 2021).…”
Section: Introductionmentioning
confidence: 99%