2016
DOI: 10.2139/ssrn.2797364
|View full text |Cite
|
Sign up to set email alerts
|

Partial Independence in Nonseparable Models

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 60 publications
0
2
0
Order By: Relevance
“…This assumption implies that the endpoints y x (w) and y x (w) are point identified. We maintain Assumption A1.2 for simplicity, but it can be relaxed using similar derivations as in Masten and Poirier (2016). Assumption A1.3 is an overlap assumption.…”
Section: Supp(ymentioning
confidence: 99%
See 1 more Smart Citation
“…This assumption implies that the endpoints y x (w) and y x (w) are point identified. We maintain Assumption A1.2 for simplicity, but it can be relaxed using similar derivations as in Masten and Poirier (2016). Assumption A1.3 is an overlap assumption.…”
Section: Supp(ymentioning
confidence: 99%
“…Thus one goal of future research is to explore this space of assumption relaxations, to understand their substantive interpretations, and to chart their implications for the robustness of empirical findings. In Masten and Poirier (2016) we have already compared three different measures of relaxation of the random assignment assumption, including the one used here. We further studied quantile independence, a common relaxation of random assignment, in Masten and Poirier (2018b).…”
Section: Breakdown Frontier Analysis For Other Models and Other Relaxmentioning
confidence: 99%