2005
DOI: 10.1007/978-3-540-32033-3_20
|View full text |Cite
|
Sign up to set email alerts
|

Partial Inversion of Constructor Term Rewriting Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
60
0

Year Published

2005
2005
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 33 publications
(60 citation statements)
references
References 17 publications
0
60
0
Order By: Relevance
“…In particular, we would like to design fully automatic strategies for producing finite extended narrowing trees (e.g., following the methods used in the context of narrowing-driven partial evaluation [1]). We find also interesting the definition of methods to automatically analyze success set equations and infer useful properties that can be used in other contexts (like the more specific transformation mentioned above, that is currently being used for improving program inversion [20,19,21]). …”
Section: Discussionmentioning
confidence: 99%
“…In particular, we would like to design fully automatic strategies for producing finite extended narrowing trees (e.g., following the methods used in the context of narrowing-driven partial evaluation [1]). We find also interesting the definition of methods to automatically analyze success set equations and infer useful properties that can be used in other contexts (like the more specific transformation mentioned above, that is currently being used for improving program inversion [20,19,21]). …”
Section: Discussionmentioning
confidence: 99%
“…Although there exist several approaches to function inversion in the literature (e.g., [6,8,10,17]), we only found a formal proof of correctness for the transformation in the work of Nishida et al [15].…”
Section: Correctnessmentioning
confidence: 98%
“…As mentioned before, the first condition above is often ignored (e.g., [15]), but we require it in order to produce partially inverted programs which are useful in practice.…”
Section: In This Case We Say That F I Is the Partial Inverse Of F Wmentioning
confidence: 99%
See 2 more Smart Citations