Sirex noctilio F. (Hymenoptera: Siricidae) is an introduced pest of pines (Pinus spp.) in several countries in the Southern Hemisphere. Although S. noctilio is established in North America (first discovered in 2004), it has not been a destructive pest there so far, where forest communities more closely resemble those in its native Eurasian range—where it is not a pest. To investigate the influence of the existing community of associated insects (competitors + natural enemies) and fungi (vectored by insects) on S. noctilio survival in North America, we examined stage-specific mortality factors and their relative importance, generating life tables drawn from experimentally-manipulated and natural cohorts of Sirex spp. (mostly S. noctilio, but some native S. nigricornis F.). For both natural and experimentally-manipulated cohorts, factors which acted during the earliest Sirex life stages, most likely tree resistance and/or competition among fungal associates, were paramount in dictating woodwasp survival. Experimentally-manipulated life tables revealed that protection from the community of associates resulted in a significantly, and substantially larger (>15x) S. noctilio F1 generation than exposure to it. Seventy percent of generation mortality in the exposed cohort was due to tree resistance or unknown causes early in larval development, which could have included competition among other bark- or wood-inhabiting insects and/or their fungal associates. Only 46% of generation mortality in the protected cohort was due to tree resistance and/or unknown causes. Parasitoids, particularly endoparasitoids (Ibalia spp.), showed limited ability to control S. noctilio, and reduced the experimentally-established cohort by only 11%, and natural cohorts an average of 3.4%. The relative importance of tree resistance vs. competition with bark- and wood-borers in reducing S. noctilio survival remains unclear. Tree resistance and/or competition likely contribute more than natural enemies in maintaining the S. noctilio population in North America below damaging levels.