Background: The optimal treatment duration for patients with bloodstream infection is understudied. The Bacteremia Antibiotic Length Actually Needed for Clinical Effectiveness (BALANCE) pilot randomized clinical trial (RCT) determined that it was feasible to enroll and randomize intensive care unit (ICU) patients with bloodstream infection to 7 versus 14 days of treatment, and served as the vanguard for the ongoing BALANCE main RCT. We performed this BALANCE-Ward pilot RCT to examine the feasibility and impact of potentially extending the BALANCE main RCT to include patients hospitalized on non-ICU wards.
Methods:We conducted an open pilot RCT among a subset of six sites participating in the ongoing BALANCE RCT, randomizing patients with positive non-Staphylococcus aureus blood cultures on non-ICU wards to 7 versus 14 days of antibiotic treatment. The co-primary feasibility outcomes were recruitment rate and adherence to treatment duration protocol. We compared feasibility outcomes, patient/pathogen characteristics, and overall outcomes among those enrolled in this BALANCE-Ward and prior BALANCE-ICU pilot RCTs. We estimated the sample size and noninferiority margin impacts of expanding the BALANCE main RCT to include non-ICU patients. Results: A total of 134 patients were recruited over 47 site-months (mean 2.9 patients/site-month, median 1.0, range 0.1-4.4 patients/site-month). The overall recruitment rate exceeded the BALANCE-ICU pilot RCT (mean 1.10 patients/ site-month, p < 0.0001). Overall protocol adherence also exceeded the adherence in the BALANCE-ICU pilot RCT (125/ 134, 93% vs 89/115, 77%, p = 0.0003). BALANCE-Ward patients were older, with lower Sequential Organ Failure Assessment scores, and higher proportions of infections caused by Escherichia coli and genito-urinary sources of bloodstream infection. The BALANCE-Ward pilot RCT patients had an overall 90-day mortality rate of 17/133 (12.8%), which was comparable to the 90-day mortality rate in the ICU pilot RCT (17/115, 14.8%) (p = 0.65). Simulation models (Continued on next page)