Lameness is a primary reason for culling and mortality within a sow herd. This study evaluated the impact of feeding organic trace minerals and methionine (Met) to growing gilts (134 d) on lameness, performance, body composition and claw health (to first parity), productivity (to second parity), and reproductive performance through 2 parities. Young gilts (28.8 ± 8.8 kg of body weight [BW], n = 360) were BW blocked (10 gilts/pen) and randomly allotted to 1 of 4 dietary treatments: control (CON, basal diet); CON plus organic minerals (MIN, at 10, 20, and 50 mg/kg of Cu, Mn, and Zn, respectively; Aplomotec Plus, Tecnología & Vitaminas, S.L, Alforja, Spain); additional Met (MET, at 102% Met: Lys); and MET plus MIN (MM). Feed was provided ad libitum. Lameness, BW, and body composition were measured 7 times during rearing, at gilt service, day 109 of gestation, and first weaning. Gilts fed the MM diet had lower average daily feed intake (5.1%) and final BW (2.1%) than CON gilts (P < 0.05), whereas MIN and MET were intermediate and not different from each other. Similarly, final backfat (BF) was greatest in CON (P < 0.05), whereas CON and MIN increased final loin depth compared with MM (P < 0.05) with MET not being different. During rearing, 7.7% of all gilts presented lameness, which appeared between 106.8 and 129.7 kg BW confidence interval. Gilts that had been or were lame had reduced BW and average daily gain compared with never lame gilts (P < 0.05). Lameness during rearing was highest (P < 0.01) in gilts fed CON diet (14.8%), with no differences amongst MIN (2.0%), MET (5.3%), or MM (6.5%). In the sow herd, 21% of sows showed lameness and 24% of those were associated with claw lesions. At weaning, gilts fed CON diet had highest (P < 0.01) prevalence of lameness (20.8%) with no differences amongst MIN (6.5%), MET (11.1%), or MM (7.6%). Over the first 2 parities, 27.3% of gilts were culled. On farm, lameness was associated with 0.7 more stillborn piglets (P < 0.10), 1 mm more BF loss in first lactation (P < 0.05), and increased weaning-to-estrus by 3 d (P < 0.05). In conclusion, lameness during rearing was decreased by supplementing organic trace minerals, methionine, and their combination, which also reduced lameness during lactation.