Camera-based passive dietary intake monitoring is able to continuously capture the eating episodes of a subject, recording rich visual information, such as the type and volume of food being consumed, as well as the eating behaviors of the subject. However, there currently is no method that is able to incorporate these visual clues and provide a comprehensive context of dietary intake from passive recording (e.g., is the subject sharing food with others, what food the subject is eating, and how much food is left in the bowl). On the other hand, privacy is a major concern while egocentric wearable cameras are used for capturing. In this article, we propose a privacy-preserved secure solution (i.e., egocentric image captioning) for dietary assessment with passive monitoring, which unifies food recognition, volume estimation, and scene understanding. By converting images into rich text descriptions, nutritionists can assess individual dietary intake based on the captions instead of the original images, reducing the risk of privacy leakage from images. To this end, an egocentric dietary image captioning dataset has been Manuscript