The overutilization of electric vehicles (EVs) has the potential to result in significant challenges regarding the reliability, contingency, and standby capabilities of traditional power systems. The utilization of renewable energy distributed generator (REDG) presents a potential solution to address these issues. By incorporating REDG, the reliance of EV charging power on conventional energy sources can be diminished, resulting in significant reductions in transmission losses and enhanced capacity within the traditional power system. The effective management of the REDG necessitates intelligent coordination between the available generation capacity of the REDG and the charging and discharging power of EVs. Furthermore, the utilization of EVs as a means of energy storage is facilitated through the integration of vehicle-to-grid (V2G) technology. Despite the importance of the V2G technology for EV owners and electric utility, it still has a slow progress due to the distrust of the revenue model that can encourage the EV owners and the electric utility as well to participate in V2G programs. This study presents a new wear model that aims to precisely assess the wear cost of EV batteries, resulting from their involvement in V2G activities. The proposed model seeks to provide EV owners with a precise understanding of the potential revenue they might obtain from participating in V2G programs, hence encouraging their active engagement in such initiatives. Various EV battery wear models are employed and compared. Additionally, this study introduces a novel method for optimal charging scheduling, which aims to effectively manage the charging and discharging patterns of EVs by utilizing a day-ahead pricing technique. This study presents a novel approach, namely, the gradual reduction of swarm size with the grey wolf optimization (GRSS-GWO) algorithm, for determining the optimal hourly charging/discharging power with short convergence time and the highest accuracy based on maximizing the profit of EV owners.