The slow motion of a small buoyant sphere near a right dihedral corner made by tangentially sliding walls is investigated. Under creeping-flow conditions the force and torque on the sphere can be decomposed into eleven elementary types of motion involving simple particle translations, particle rotations and wall movements. Force and torque balances are employed to find the velocity and rotation of the particle as functions of its location. Depending on the ratio of the wall velocities and the gravitational settling velocity of the sphere, different dynamical regimes are identified. In particular, a non-trivial line attractor/repeller for the particle motion exists at a location detached from both the walls. The existence, location and stability of the corresponding two-dimensional fixed point are studied depending on the wall velocities and the buoyancy force. The impact of the line attractors/repellers on the motion of small particles in cavities and its relevance for corner cleaning applications are discussed.