Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The recent developments in mineral processing led researchers to look for alternative methods and propose new mechanisms for enhancing the efficiency of relatively costly processes (e.g., flotation, aggregation), where especially dealing with fine particles. Finer the particles, the higher the role of their surface on their behavior and properties. The importance of particle morphology becomes even clearer when particle-particle and particle-bubble interactions are considered. In this study, the effect of particle shape "roundness" on the surface wettability and flotation response was investigated upon producing fine particles with the "abrasion blasting" method. In order to provide a fundamental perspective, adsorption measurements were also carried out along with the flotation experiments under the same conditions. In addition to these, zeta potential measurements were also carried out with both spherical and blasted particles as a function of collector concentration. The results suggested that the roundness of particles decreased up to a certain nozzle pressure value, which was followed by higher adsorption degrees and consequently higher flotation recoveries. Additionally, settling rate tests were also performed with very fine material to show the effect of particle morphology on particle-particle interactions. The results showed that while lower settling rate values were obtained for spherical ones, higher values were obtained in the case of the ground and blasted samples in the presence of DI water. It was concluded from this study that the "Abrasive blasting method" could be an effective alternative for tuning the surface morphology of particles and their wettability, which in turn can affect the particleparticle interactions in the system.
The recent developments in mineral processing led researchers to look for alternative methods and propose new mechanisms for enhancing the efficiency of relatively costly processes (e.g., flotation, aggregation), where especially dealing with fine particles. Finer the particles, the higher the role of their surface on their behavior and properties. The importance of particle morphology becomes even clearer when particle-particle and particle-bubble interactions are considered. In this study, the effect of particle shape "roundness" on the surface wettability and flotation response was investigated upon producing fine particles with the "abrasion blasting" method. In order to provide a fundamental perspective, adsorption measurements were also carried out along with the flotation experiments under the same conditions. In addition to these, zeta potential measurements were also carried out with both spherical and blasted particles as a function of collector concentration. The results suggested that the roundness of particles decreased up to a certain nozzle pressure value, which was followed by higher adsorption degrees and consequently higher flotation recoveries. Additionally, settling rate tests were also performed with very fine material to show the effect of particle morphology on particle-particle interactions. The results showed that while lower settling rate values were obtained for spherical ones, higher values were obtained in the case of the ground and blasted samples in the presence of DI water. It was concluded from this study that the "Abrasive blasting method" could be an effective alternative for tuning the surface morphology of particles and their wettability, which in turn can affect the particleparticle interactions in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.