A new rotating membrane emulsification system using a stainless steel membrane with 100 µm laser drilled pores was used to produce oil/water emulsions consisting of 2 wt. % Tween 20 as emulsifier, paraffin wax as dispersed oil phase and 0.01-0.25 wt. % Carbomer (Carbopol ETD 2050) as stabilizer. The membrane tube, 1 cm in diameter, was rotated inside a stationary glass cylinder, diameter of 3 cm, at a constant speed in the range 50-1500 rpm. The oil phase was introduced inside the membrane tube and permeated through the porous wall moving radially into the continuous phase in the form of individual droplets. Increasing the membrane rotational speed increased the wall shear stress which resulted in a smaller average droplet diameter being produced. For a constant rotational speed, the average droplet diameter increased as the stabilizer content in the continuous phase was lowered. The optimal conditions for producing uniform emulsion droplets were a Carbomer content of 0.1-0.25 wt. % and a membrane rotational speed of 350 rpm, under which the average droplet diameter was 105-107 µm and very narrow coefficients of variation of 4.8-4.9 %. A model describing the operation is described and it is concluded that the methodology holds potential as a manufacturing protocol for both coarse and fine droplets and capsules.