In response to global challenges such as climate change and food insecurity, plant proteins have gained interest. Among these, lentils have emerged as a promising source of proteins due to their good nutritional profile and sustainability considerations. However, their widespread use in food products has been impeded by limited solubility. This study aimed to investigate the potential of high-shear mixing, a resource-efficient technique, to enhance lentil protein solubility and its functional properties. Red lentil protein isolate powders were rehydrated and subjected to a semi-continuous in-line high-shear treatment at 10,200 rpm for a timespan ranging from 0 to 15 min. The results highlighted a significant (p < 0.05) increase in solubility from 46.87 to 68.42% after 15 min of shearing and a reduction in particle size as a result of the intense shearing and disruption provided by the rotor and forced passage through the perforations of the stator. The volume-weighted mean diameter decreased from 5.13 to 1.72 µm after 15 min of shearing, also highlighted by the confocal micrographs which confirmed the breakdown of larger particles into smaller and more uniform particles. Rheological analysis indicated consistent Newtonian behaviour across all dispersions, with apparent viscosities ranging from 1.69 to 1.78 mPa.s. Surface hydrophobicity increased significantly (p < 0.05), from 830 to 1245, indicating exposure of otherwise buried hydrophobic groups. Furthermore, colloidal stability of the dispersion was improved, with separation rates decreasing from 71.23 to 24.16%·h−1. The significant enhancements in solubility, particle size reduction, and colloidal stability, highlight the potential of in-line high-shear mixing in improving the functional properties of lentil protein isolates for formulating sustainable food products with enhanced techno-functional properties.