2022
DOI: 10.1007/978-981-16-1803-1_5
|View full text |Cite
|
Sign up to set email alerts
|

Particle Size and Shape Engineering for Advanced Materials

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 152 publications
0
1
0
Order By: Relevance
“…The negative Gibbs energy values calculated by using the Factsage package (Figure 4), 60 along with the relevant thermodynamic data and phase diagrams reported in the literature 1,6,11,23,6070 suggest that the reaction between a transition metal or rare earth metal, and elemental boron is thermodynamically favourable, at all the temperatures, which is the thermodynamic basis behind various synthesis routes, including the conventional high-temperature and high pressure arc-melting, 71,72 high temperature solid-state reaction, 73,74 as well as long time mechanical alloying. 7476 Given the extremely exothermic nature of Reaction (1), 1,6,6070 the so-called self-propagating high-temperature synthesis (SHS) was also used. 77,78 These synthesis approaches suffer from various disadvantages, for example requirement of high temperature/pressure and/or long processing time and/or high agglomeration of product boride.…”
Section: Molten Salt Synthesis Of Binary Metal Boridesmentioning
confidence: 93%
“…The negative Gibbs energy values calculated by using the Factsage package (Figure 4), 60 along with the relevant thermodynamic data and phase diagrams reported in the literature 1,6,11,23,6070 suggest that the reaction between a transition metal or rare earth metal, and elemental boron is thermodynamically favourable, at all the temperatures, which is the thermodynamic basis behind various synthesis routes, including the conventional high-temperature and high pressure arc-melting, 71,72 high temperature solid-state reaction, 73,74 as well as long time mechanical alloying. 7476 Given the extremely exothermic nature of Reaction (1), 1,6,6070 the so-called self-propagating high-temperature synthesis (SHS) was also used. 77,78 These synthesis approaches suffer from various disadvantages, for example requirement of high temperature/pressure and/or long processing time and/or high agglomeration of product boride.…”
Section: Molten Salt Synthesis Of Binary Metal Boridesmentioning
confidence: 93%